

Vibrafoam SD10

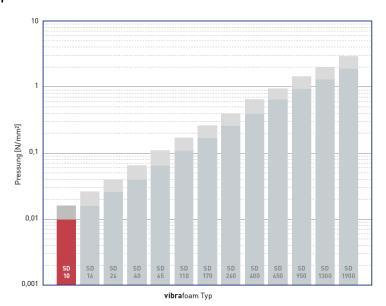
Version: September 2020 page 1/3

Vibrafoam® SD10

For Vibration Isolation and Structure-Borne Noise Reduction

Recommendations for elastic suspension

- Material Mixed cellular polyether-urenthane
- Colour red


Range of application

- Static continuous load Up to 0.010 N/mm²
- Operating range (static + dynamic) Up to 0.016 N/mm²
- Peak loads 0.5 N/mm²

Values depending on form factor and apply to form factor q=3

Delivery specifications

Thickness: 12.5 mm and 25 mm Mats: 0.5 m wide, 2.0 m long Stripes max. 2,0 m long Other dimensions on requestet

Physical properties

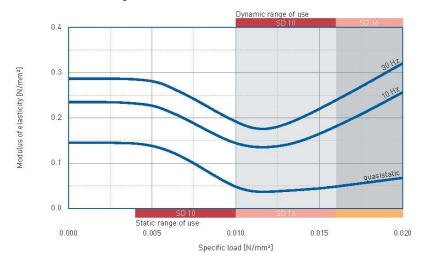
Properties	Value	Test method	Comment
Mechanical loss factor (1)	0.25	DIN 53513 ⁽²⁾	guide value
Satic E-modulus (1)	0.048 N/mm ²	DIN 53513 ⁽²⁾	
Dynamic E-modulus (1)	0.144 N/mm²	DIN 53513 ⁽²⁾	
Static shear moodulus (1)	0.04 N/mm²	DIN 53513 ⁽²⁾	preload 0.010 N/mm²
Dynamic shear modulus (1)	0.09 N/mm ²	DIN 53513 ⁽²⁾	preload 0.010 N/mm ² , 10 Hz
Resistance to strain	0.011 N/mm ²		at 10% deformation
Residual compression set	<5 %	DIN EN ISO 1856	50%, 23°C, 70 h, 30 min after unloading
Tensile strength	>0.35 N/mm²	DIN 53455-6-4	minimum
Elongation at break	>400 %	DIN 53455-6-4	minimum
Tear resistance	>0.6 N/mm²	DIN ISO 34-1/A	
Rebound elasticity	50 %	DIN EN ISO 8307	' ± 10%
Specific volume resistance	$>10^{12}~\Omega$ cm	DIN IEC 93	dry
Thermal conductivity	0.05 W/[m K]	DIN 52612-1	
Operating temperature	-30 to +70 °C		
Teamperature peak	+ 120 °C		
Inflammability	Class E / EN 13501-1	EN ISO 11925-1	normal flammable

⁽¹⁾ measured at maximum limit of static application range

All information and data is based our current knowledge. The data are subject to typical manufacturing tolerances and are not guaranteed. We reserve the right to amend the data.

⁽²⁾ test according to DIN 53513

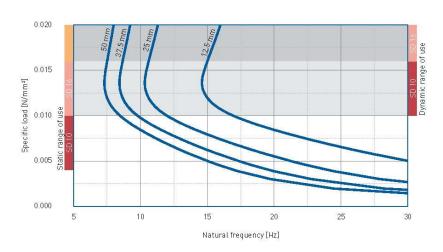
Vibrafoam SD10


Version: September 2020 page 2/3

Load deflection curve

Recording of the 3rd loading: testing between steel plates at room temperature measured with a deflection rate of 1% of the thickness per second. Form factor q=3

Modulus of elasticity



Dynamic test: sinusoidal excitation with an oscillating range of ± 0.22 mm at 10 Hz und ± 0.08 mm at 30 Hz.

Quasistatic modulus of elasticity: tangent modulus taken from the load deflection curve

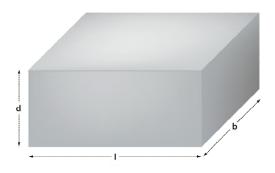
Test according to DIN 53513 Form factor q = 3

Natural frequency

Natural frequency of a single-degree-of-freedom system consisting of a fixed mass and an elastic bearing consisting of vibrafoam[®] SD10 on a stiff subgrade.

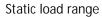
Form factor q = 3

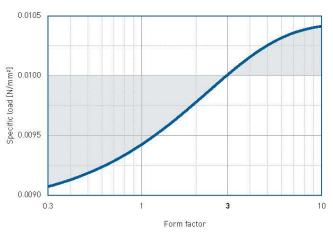
Vibrafoam SD10

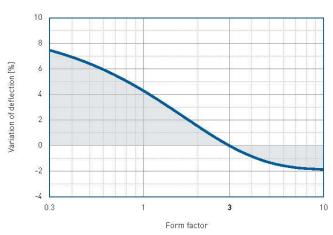

Version: September 2020 page 3/3

Impact of form factor

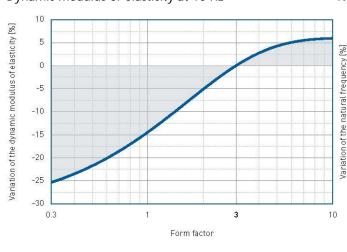
The siffness of elastomers depends on their geometry.

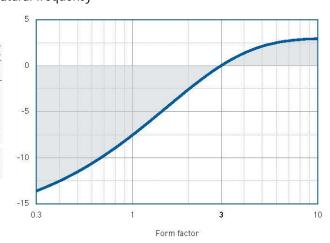

The form factor q is definded as the ratio of load-bearing area to bearing shell area.


The following applies to the building block:


$$q = \frac{l \cdot b}{2 \cdot d \cdot (l + b)}$$

Correction values varying form factors specific load 0.01 N/mm², form factor q=3




Deflection

Dynamic modulus of elasticity at 10 Hz

Natural frequency

All information and data is based our current knowledge. The data are subject to typical manufacturing tolerances and are not guaranteed. We reserve the right to amend the data. Vibradyn (Vibrafoam) is a registered trademark of KRAIBURG Relastec GmbH & Co. KG