

Vibrafoam SD1900

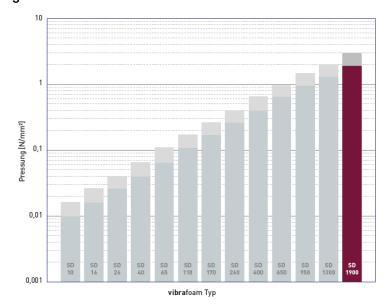
Stand: September 2020 Blatt 1/3

Vibrafoam® SD1900

zur Schwingungsisolierung und Körperschalldämmung

Empfehlungen für die elastische Lagerung

- Werkstoff gemischtzelliges Polyetherurethan
- Farbe bordeaux


Einsatzbereich

- Statische Dauerlast Bis 1,900 N/mm²
- Arbeitsbereich (statisch + dynamisch) bis 2,800 N/mm²
- Lastspitzen 7,0 N/mm²

Die angegeben Werte sind vom Formfaktor abhängig und gelten für Formfaktor q = 3

Lieferformen

Dicken: 12,5 mm und 25 mm Matten: 0,5 m breit, 2,0 mm lang Streifen max. 2,0 m lang Andere Abmessungen auf Anfrage

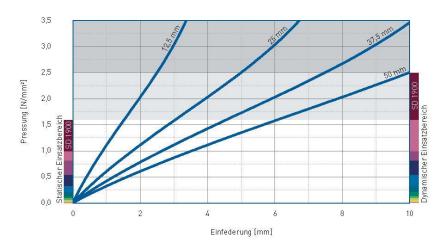
Physikalische Eigenschaften

Eigenschaft	Wert	Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	0,09	DIN 53513 ⁽²⁾	Richtwert
Statischer E-Modul (1)	20,40 N/mm ²	DIN 53513 ⁽²⁾	
Dynamischer E-Modul (1)	78,20 N/mm ²	DIN 53513 ⁽²⁾	
Statischer Schubmodul (1)	1,75 N/mm²	DIN 53513 ⁽²⁾	Vorspannung 1,90 N/mm ²
Dynamischer Schubmodul (1)	6,00 N/mm ²	DIN 53513 ⁽²⁾	Vorspannung 1,90 N/mm ² , 10 Hz
Stauchhärte	1,840 N/mm ²		bei 10% Verformung
Druckverformungsrest	<8,00 %	DIN EN ISO 1856	50%, 23°C, 70 h, 30 min nach Entlastung
Reißfestigkeit	>5,00 N/mm ²	DIN 53455-6-4	Mindestwert
Reißdehnung	>400 %	DIN 53455-6-4	Mindestwert
Weiterreißfestigkeit	>6,00 N/mm	DIN ISO 34-1/A	
Rückprallelastizität	40 %	DIN EN ISO 8307	± 10%
Spezifischer Durchgangswiederstand	$I > 10^{11} \Omega cm$	DIN IEC 93	Trocken
Wärmeleitfähigkeit	0,11 W/[m K]	DIN 52612-1	
Einsatztemperatur	-30 bis +70 °C		
Temperaturspitze	+ 120 °C		
Brandverhalten	Klasse E / EN 13501-	1EN ISO 11925-1	normal entflammbar

⁽¹⁾ Gemessen an der Obergrenze des statischen Einsatzbereiches

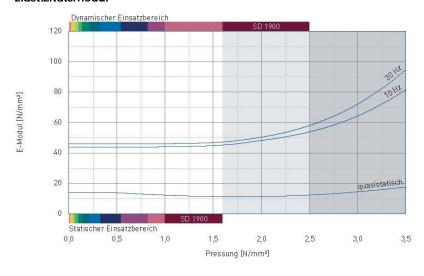
Alle Angaben beruhen auf unserem derzeitigen Wissenstand. Sie unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

⁽²⁾ Prüfverfahren in Anlehnung an DIN 53513

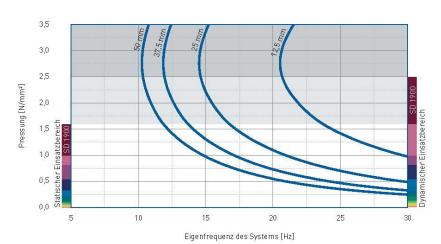


Vibrafoam SD1900

Stand: September 2020 Blatt 2/3


Federkennlinie

Aufgezeichnet wurde jeweils die 3. Belastung. Prüfung bei Raumtemperatur zwischen ebenen Stahlplatten.


Prüfgeschwindigkeit v=1% der Dicke pro Sekunde, Formfaktor q=3

Elastizitätsmodul

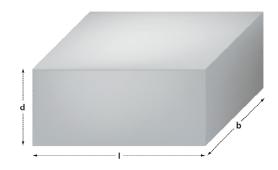
Dynamische Prüfung: harmonische Anregung mit einer Amplitude von $\pm 0,22$ mm bei 10 Hz und $\pm 0,08$ mm bei 30 Hz. Quasistatischer E-Modul: Tangentenmodul aus der Federkennlinie. Messung in Anlehnung an DIN 53513, Formfaktor q=3

Eigenfrequenz

Eigenfrequenz eines Systems, bestehend aus einer kompakten
Masse und einer elastischen Lagerung aus vibrafoam® SD1900 auf starrem Untergrund,

Formfaktor q=3

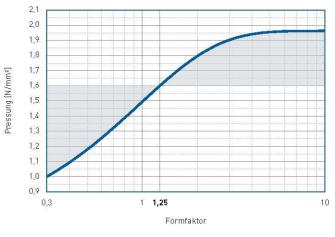
Vibrafoam SD1900

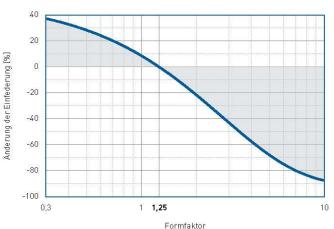

Stand: September 2020 Blatt 3/3

Einfluss des Formfaktors

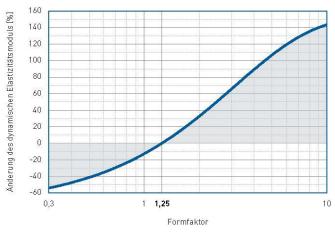
Die Steifigkeit von Elastomeren ist von der Geometrie abhängig.

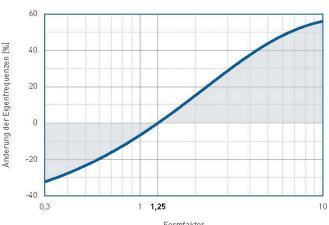
Der Formfaktor q ist definiert als das Verhältnis von belasteter Fläche zur Mantelfläche des Lagers.


Für den Quader gilt:


$$q = \frac{l \cdot b}{2 \cdot d \cdot (l + b)}$$

Korrekturwerte bei unterschiedlichen Formfaktoren Pressung 0,11 N/mm², Formfaktor q=3


Grenzwert der statischen Dauerlast


Einfederung

Dynamischer Elastizitätsmodul bei 10 Hz

Eigenfrequenz

Alle Angaben beruhen auf unserem derzeitigen Wissenstand. Sie unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Vibrafoam® ist eine eingetragene Marke der KRAIBURG Relastec GmbH & Co. KG